Abstract
The industrial 4.0 era is the fourth industrial revolution and is characterized by network penetration; therefore, traditional manufacturing and value creation will undergo revolutionary changes. Artificial intelligence will drive the next industrial technology revolution, and knowledge graphs comprise the main foundation of this revolution. The intellectualization of industrial information is an important part of industry 4.0, and we can efficiently integrate multisource heterogeneous industrial data and realize the intellectualization of information through the powerful semantic association of knowledge graphs. Knowledge graphs have been increasingly applied in the fields of deep learning, social network, intelligent control and other artificial intelligence areas. The objective of this present study is to combine traditional NLP (natural language processing) and deep learning methods to automatically extract triples from large unstructured Chinese text and construct an industrial knowledge graph in the automobile field.
Funder
Science Foundation of Yunnan University
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献