Responses of Fine Root Functional Traits to Soil Nutrient Limitations in a Karst Ecosystem of Southwest China

Author:

Pan Fujing,Liang Yueming,Wang Kelin,Zhang Wei

Abstract

Soil nitrogen (N) and phosphorus (P) shortages limit the growth of shrubs, and P shortage limit the growth of trees in karst ecosystems. Changes in fine root functional traits are the important strategies for plants to respond to such nutrient shortages. However, such responses in karst ecosystems are poorly known. To determine the responses of fine root functional traits to soil N and P changes and define their resource-use strategies in the ecosystem, we tested the specific root length (SRL), root tips over the root biomass (RT/RB), and N concentration (Nroot) in the fine roots of four plant species (two shrubs (Alchornea trewioides and Ligustrum sinense) and two trees (Celtis biondii and Pteroceltis tatarinowii)) during the dry (January) and the wet (July) season. The results showed that the SRL, RT/RB, and Nroot in the fine roots of shrub species were lower than those of tree species, and the three parameters were higher in the wet season than in the dry season. Linear regression models revealed that the SRL, RT/RB, and Nroot of overall species increased with increasing soil N and P concentrations and availabilities, and were positively correlated with increasing rhizosphere soil oxalic acid, microbial biomass carbon (C), and the activities of hydrolytic enzymes. In addition, the individual plant species had unique patterns of the three fine root traits that resulted affected by the change of soil nutrients and biochemistry. Thus, the specific root length, root tips over the root biomass, and N concentrations of fine roots were species-specific, affected by seasonal change, and correlated with soil nutrients and biochemistry. Our findings suggests that fine root functional traits increase the ability of plant species to tolerate nutrient shortage in karst ecosystems, and possibly indicated that a P-exploitative strategy in tree species and an N-conservative strategy in shrub species were exhibited.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3