An Optimized Neural Network Acoustic Model for Porous Hemp Plastic Composite Sound-Absorbing Board

Author:

Wang Haizhen,Zhao Hong,Lian Zuozheng,Tan Bin,Zheng Yongjie,E Erdun

Abstract

Current acoustic modeling methods face problems such as complex processes or inaccurate sound absorption coefficients, etc. Therefore, this paper studies the topic. Firstly, the material samples were prepared, and standing wave tube method experiments were conducted. Material acoustic data were obtained, while a model using improved genetic algorithm and neural network was subsequently proposed. Secondly, the acoustic data obtained from the experiment were analyzed; a neural network structure was designed; and the training, verification, and test data were all divided. In order to facilitate data processing, a symmetrical method was used to inversely normalize all the data. Thirdly, by the design of real coding scheme, fitness function, crossover, and mutation operators, an improved genetic algorithm was proposed to obtain the optimal solution, as the initial weight and threshold, which were then input into the neural network along with the training and verification data. Finally, the test data were input into the trained neural network in order to test the model. The test results and statistical analysis showed that compared with other algorithms, the proposed model has the lower root mean squared error (RMSE) value, the maximum coefficient of determination (R2) value, and shorter convergence time.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference42 articles.

1. Road traffic air and noise pollution exposure assessment – A review of tools and techniques

2. Evidence of the impact of noise pollution on biodiversity: a systematic map

3. Effects of noise pollution on the health of exposed population and its threshold levels;Nazneen;J. Med. Sci.,2017

4. Noise Annoyance in the UAE: A Twitter Case Study via a Data-Mining Approach

5. Research progress of ammonia adsorption materials;Wang;Chin. J. Process Eng.,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3