Fixed-Time Synchronization Analysis of Genetic Regulatory Network Model with Time-Delay

Author:

Zhou Yajun,Gao YouORCID

Abstract

The synchronous genetic regulatory networks model includes the drive system and response system, and the drive-response system is symmetric. From a biological point of view, this model illustrates the dynamic behaviors in gene-to-protein processes, in terms of transcription and translation. This paper introduces a model of genetic regulatory networks with time delay. The fixed-time synchronization control problem of the proposed model is studied based on fixed-time stability theory and the Lyapunov method. Concretely, the authors first propose a way to switch from the given model to matrix form. Then, two types of novel controllers are designed and the corresponding sufficient conditions are investigated respectively to ensure the fixed-time synchronization goal. Moreover, the settling times of fixed-time synchronization are estimated for the addressed discontinuous controllers, which are not dependent on the initial or delayed states of the model. Finally, numerical simulations are presented and compared to illustrate the benefits of the theoretical results.

Funder

Natural Science Foundation of Hunan Province

Scientific Research Foundation of Hunan Provincial Education Department

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3