ST-DEVS: A Methodology Using Time-Dependent-Variable-Based Spatiotemporal Computation

Author:

Cho Taeho

Abstract

Various real systems are being replicated in cyberspace to solve complex and difficult problems, as exemplified by the digital twin. Once such a software system is implemented, an effective computational method should be applied to the system so that the corresponding real system, connected by networks or sensors, can be indirectly controlled. Considering that all behaviors in real systems occur in space−time, the behavior-related computation in the corresponding software system should adopt both time and space as essential elements to ensure a valid representation of the real system and to effectively perform subsequent computations. Therefore, applying a spatiotemporal computation consisting of time-dependent variables and temporal statements that use such variables is a natural approach to solving problems encountered in the target real system. In this study, the ST-DEVS (spatiotemporal computation DEVS) formalism is proposed to define time-dependent variables and an execution algorithm on temporal logic statements whose arguments are the time-dependent variables; the ST-DEVS is an extension of the discrete event system specification (DEVS). To control real systems with a certain level of autonomy, at least two basic capabilities must be ensured: monitoring and action execution. In this study, action-type temporal logic with time-dependent variables and an action execution algorithm are proposed to illustrate the effectiveness of the spatiotemporal computation process. The previously defined monitoring capability is integrated into ST-DEVS so that monitoring and action execution can be processed uniformly. The proposed approach is designed considering the symmetry between the real world and the cyber world, in that both worlds are influenced by time and space.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference33 articles.

1. Object-Oriented Simulation with Hierarchical, Modular Models: Intelligent Agents and Endomorphic Systems;Zeigler,1990

2. Theory of Modeling and Simulation: Discrete Event & Iterative System Computational Foundations;Zeigler,2018

3. Digital Twin in the IoT Context: A Survey on Technical Features, Scenarios, and Architectural Models

4. A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3