Combined Pressure-Driven and Electroosmotic Slip Flow through Elliptic Cylindrical Microchannels: The Effect of the Eccentricity of the Channel Cross-Section

Author:

Chuchard PearanatORCID,Numpanviwat NattakarnORCID

Abstract

Electroosmotic force has been used extensively to manipulate fluid flow in a microfluidic system with various channel shapes, especially an elliptic cylinder. However, developing a computational domain and simulating fluid flow for a system involving an elliptic channel consumes a large amount of time. Moreover, the mathematical expression for the fluid velocity of electroosmotic flow in an elliptic channel may be given in the form of the Mathieu functions that have difficulty in achieving the numerical result. In addition, there is clear scientific evidence that confirms the slippage of fluid at the solid-fluid interface in a microscale system. In this study, we present the mathematical model of combined pressure-driven and electroosmotic flow through elliptic microchannels under the slip-fluid condition. From the practical point of view in fluidics, the effect of the eccentricity of the channel cross-section is investigated on the volumetric flow rate to overcome the difficulty. The results show that the substitution of the equivalent circular channel for an elliptic channel provides a valid flow rate under the situation that the areas of both channel cross-sections are equal and the eccentricity of the elliptic cross-section is less than 0.5. Additionally, the flow rate obtained from the substitution is more accurate when the slip length increases or the pressure-gradient-to-external-electric-field ratio decreases.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transforming Navier‐stokes equation to a fourth order nonlinear differential equation for the study of electrolyte flow in a circular microchannel;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2022-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3