A Multi-Attention UNet for Semantic Segmentation in Remote Sensing Images

Author:

Sun Yu,Bi Fukun,Gao Yangte,Chen Liang,Feng Suting

Abstract

In recent years, with the development of deep learning, semantic segmentation for remote sensing images has gradually become a hot issue in computer vision. However, segmentation for multicategory targets is still a difficult problem. To address the issues regarding poor precision and multiple scales in different categories, we propose a UNet, based on multi-attention (MA-UNet). Specifically, we propose a residual encoder, based on a simple attention module, to improve the extraction capability of the backbone for fine-grained features. By using multi-head self-attention for the lowest level feature, the semantic representation of the given feature map is reconstructed, further implementing fine-grained segmentation for different categories of pixels. Then, to address the problem of multiple scales in different categories, we increase the number of down-sampling to subdivide the feature sizes of the target at different scales, and use channel attention and spatial attention in different feature fusion stages, to better fuse the feature information of the target at different scales. We conducted experiments on the WHDLD datasets and DLRSD datasets. The results show that, with multiple visual attention feature enhancements, our method achieves 63.94% mean intersection over union (IOU) on the WHDLD datasets; this result is 4.27% higher than that of UNet, and on the DLRSD datasets, the mean IOU of our methods improves UNet’s 56.17% to 61.90%, while exceeding those of other advanced methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3