Numerical and Theoretical Analysis of Sessile Droplet Evaporation in a Pure Vapor Environment

Author:

Shen YangORCID,Kang Feng,Cheng Yongpan,Liu Pengxiang,Wang Xiao,Zhang Kai

Abstract

The evaporation of sessile droplets is not only a common occurrence in daily life, but it also plays a vital role in many scientific and industrial fields. However, most of the current research is focused on the evaporation of droplets in the air environment, where vapor transport is controlled by the diffusion model, but when the droplet evaporation is in its own pure vapor environment, the above model will no longer apply, and the evaporation will be dominated by kinetic theory. Thus the Hertz–Knudsen model can be applied to describe the evaporation kinetics. However, in most of the studies, it is assumed that the temperature distribution is uniform along the vapor-liquid interface of the droplet, but due to the evaporative cooling effect, this assumption is not correct in actual evaporation. In this paper, theoretical analysis and numerical simulation were combined to study the characteristics of droplet evaporation with multiphysics coupling. In the theoretical model, heat conduction in the droplet and substrate was coupled with vapor transport at the droplet surface. In the numerical simulation, internal thermocapillary flow and heat transfer of the droplet were coupled with vapor transport at the droplet surface. The effects of contact angle, thermocapillary convection, ambient pressure ratio, and substrate superheat on the droplet evaporation characteristics were quantitatively analyzed. It was found that the high substrate superheat or low ambient pressure ratio will enhance the droplet thermocapillary convection as well as evaporation rate. Furthermore, a critical contact angle was found; below this value, the droplet evaporation rate was inversely proportional to the contact angle, but upon this value, the trend was reversed. These findings have important implications for revealing the physical mechanism of kinetics-controlled droplet evaporation in a pure vapor environment.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3