A New Construction of High Performance LDPC Matrices for Mobile Networks

Author:

Sarvaghad-Moghaddam MoeinORCID,Ullah WaheedORCID,Jayakody Dushantha Nalin K.ORCID,Affes SofièneORCID

Abstract

Secure and reliable information flow is one of the main challenges in social IoT and mobile networks. Information flow and data integrity is still an open research problem. In this paper, we develop new methods of constructing systematic and regular Low-Density Parity-Check Matrices (LDPCM), inspired by the structure of the Sarrus method and geometric designs. Furthermore, these codes have cyclic structure and therefore, are less complex in computation and also require less memory in hardware implementation. Besides, an optimal method of post-processing for deleting girths four is presented. Numerical results show that the codes constructed by these methods perform well over the additive white Gaussian noise (AWGN) channel when decoded with the sum-product LDPC iterative algorithms. The proposed methods can be very efficient in terms of reducing memory consumption and improving the convergence speed of the decoder particularly in IoT and mobile networks.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference47 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. OTFS modulated massive MIMO with 5G NR LDPC coding: Trends, challenges and future directions;Computer Networks;2024-12

2. Adaptive Group Shuffled Symbol Flipping Decoding Algorithm;IEEE Access;2024

3. Adaptive Group Based Symbol Flipping Decoding Algorithm;2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring);2023-06

4. An Adaptive Exponential Min Sum Decoding Algorithm;2023 6th Conference on Cloud and Internet of Things (CIoT);2023-03-20

5. QC-LDPC Codes From Difference Matrices and Difference Covering Arrays;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3