A Robust Planar Marker-Based Visual SLAM

Author:

Wang Zhoubo,Zhang Zhenhai,Zhu Wei,Hu Xuehai,Deng Hongbin,He Guang,Kang Xiao

Abstract

Many visual SLAM systems are generally solved using natural landmarks or optical flow. However, due to textureless areas, illumination change or motion blur, they often acquire poor camera poses or even fail to track. Additionally, they cannot obtain camera poses with a metric scale in the monocular case. In some cases (such as when calibrating the extrinsic parameters of camera-IMU), we prefer to sacrifice the flexibility of such methods to improve accuracy and robustness by using artificial landmarks. This paper proposes enhancements to the traditional SPM-SLAM, which is a system that aims to build a map of markers and simultaneously localize the camera pose. By placing the markers in the surrounding environment, the system can run stably and obtain accurate camera poses. To improve robustness and accuracy in the case of rotational movements, we improve the initialization, keyframes insertion and relocalization. Additionally, we propose a novel method to estimate marker poses from a set of images to solve the problem of planar-marker pose ambiguity. Compared with the state-of-art, the experiments show that our system achieves better accuracy in most public sequences and is more robust than SPM-SLAM under rotational movements. Finally, the open-source code is publicly available and can be found at GitHub.

Funder

National Natural Science Foundation of China

National Defense Technology of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fiducial Marker and Camera-Based Passive High-Accuracy 6-DoF Tracking for Mobile Objects;2023 5th International Conference on Control and Robotics (ICCR);2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3