Control of Crystallographic Texture and Mechanical Properties of Hastelloy-X via Laser Powder Bed Fusion

Author:

Hibino ShinyaORCID,Todo Tsubasa,Ishimoto TakuyaORCID,Gokcekaya Ozkan,Koizumi YuichiroORCID,Igashira Kenichiroh,Nakano TakayoshiORCID

Abstract

The influence of various laser powder bed fusion (LPBF) process parameters on the crystallographic textures and mechanical properties of a typical Ni-based solid-solution strengthened alloy, Hastelloy-X, was examined. Samples were classified into four groups based on the type of crystallographic texture: single crystalline-like microstructure with <100>//build direction (BD) (<100>-SCM), single crystalline-like microstructure with <110>//BD (<110>-SCM), crystallographic lamellar microstructure (CLM), or polycrystalline microstructure (PCM). These four crystallographic textures were realized in Hastelloy-X for the first time here to the best of our knowledge. The mechanical properties of the samples varied depending on their texture. The tensile properties were affected not only by the Schmid factor but also by the grain size and the presence of lamellar boundaries (grain boundaries). The lamellar boundaries at the interface between the <110>//BD oriented main layers and the <100>//BD-oriented sub-layers of CLM contributed to the resistance to slip transmission and the increased proof stress. It was possible to control a wide range of crystallographic microstructures via the LPBF process parameters, which determines the melt pool morphology and solidification behavior.

Funder

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3