Novel Nitride Materials Synthesized at High Pressure

Author:

Wang PeiORCID,Wang Shanmin,Zou YongtaoORCID,Zhu Jinlong,He Duanwei,Wang Liping,Zhao Yusheng

Abstract

Nitride materials including conventional manmade superhard light-element nitrides, such as cubic boron nitride (cBN), cubic silicon nitride (γ-Si3N4), and carbonitrides, have been extensively used for machining (e.g., turning, cutting, grinding, boring, drilling) and coating of ferr ous alloys due to their remarkable performances of high rigidity, high melting-point, and prominent chemical and thermal stabilities. However, to some degree, superhard nitrides merely compensate for the adverse limitations of diamond: reaction (with iron), oxidation, and graphitization at moderate temperatures; they are still unable to dominate the market owing to their relatively low hardness when compared to diamond. Therefore, recent efforts toward the preparation of nitride materials with outstanding mechanical performance and chemical inertness have focused on synthesizing ternary light-element nitride compounds and harvesting the effect of work hardening through microstructure manipulations. These new light-element nitrides are potential candidates to displace diamond in the cutting business. On the other hand, incorporation of transition-metal atoms into the dinitrogen triple-bond can form novel hard transition-metal nitride alloys (TMNAs), such as Mo-N, W-N, Pt-N, Ir-N, Os-N, etc., which are potential candidates for the cutting, coating, and polishing of iron-group metals. However, synthesis of high-crystallinity and stoichiometric TMNAs via traditional routes is challenging, since the embedded nitrogen in the transition-metal lattice is thermodynamically unfavorable at ambient condition. A novel approach involving ion-exchange reactions under moderate pressure and temperature has been developed in recent years for preparation of well-crystallized stoichiometric TMNAs, which have quickly been realized as emergent materials in electronics, catalysts, and superconductors as well.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3