Abstract
Nitride materials including conventional manmade superhard light-element nitrides, such as cubic boron nitride (cBN), cubic silicon nitride (γ-Si3N4), and carbonitrides, have been extensively used for machining (e.g., turning, cutting, grinding, boring, drilling) and coating of ferr ous alloys due to their remarkable performances of high rigidity, high melting-point, and prominent chemical and thermal stabilities. However, to some degree, superhard nitrides merely compensate for the adverse limitations of diamond: reaction (with iron), oxidation, and graphitization at moderate temperatures; they are still unable to dominate the market owing to their relatively low hardness when compared to diamond. Therefore, recent efforts toward the preparation of nitride materials with outstanding mechanical performance and chemical inertness have focused on synthesizing ternary light-element nitride compounds and harvesting the effect of work hardening through microstructure manipulations. These new light-element nitrides are potential candidates to displace diamond in the cutting business. On the other hand, incorporation of transition-metal atoms into the dinitrogen triple-bond can form novel hard transition-metal nitride alloys (TMNAs), such as Mo-N, W-N, Pt-N, Ir-N, Os-N, etc., which are potential candidates for the cutting, coating, and polishing of iron-group metals. However, synthesis of high-crystallinity and stoichiometric TMNAs via traditional routes is challenging, since the embedded nitrogen in the transition-metal lattice is thermodynamically unfavorable at ambient condition. A novel approach involving ion-exchange reactions under moderate pressure and temperature has been developed in recent years for preparation of well-crystallized stoichiometric TMNAs, which have quickly been realized as emergent materials in electronics, catalysts, and superconductors as well.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Phonon-assisted carrier transport and indirect optical absorption of cubic boron nitride from first-principles;Journal of Applied Physics;2024-02-01
2. Advances in fabrication, physio-chemical properties, and sensing applications of non-metal boron nitride and boron carbon nitride-based nanomaterials;Surfaces and Interfaces;2023-10
3. Anti-perovskite nitrides and oxides: Properties and preparation;Computational Materials Science;2023-06
4. Vickers hardness of Ru-, Ta-, W-, Re-, Os-, and Ir carbides and nitrides calculated by the bond strength method;MRS Communications;2022-08-16
5. Synthesis, crystal structure, and properties of stoichiometric hard tungsten tetraboride, WB4;Journal of Materials Chemistry A;2022