Molecular Dynamics Simulation in the Interlayer of Mixed-Layer Clays Due to Hydration and Swelling Mechanism

Author:

Yang Yu,Adhikari Sanjeev,Xu Guoyuan

Abstract

The swelling behavior of clay minerals is widely known for its importance in soil and environmental sciences and its detrimental effects in engineering fields. Although more than 70 percent of all clays are of mixed-layer types, the vast majority of the previous experiments and simulations are focused on pure clays, which cause the swelling mechanism of the widespread mixed-layer clay (MLC) and its role in soils are little understood, especially the most common illite-montmorillonite (I-M) mixed-layer clay (MLC). This paper reports on a molecular dynamics (MD) study of the differences in swelling behavior between I-M MLCs containing K+ and Na+ and Na-montmorillonite (MMT). It captures the evolution of quantitative properties such as basal spacing d, interaction energy, and many hydrogen bonds in the clay interlayer, increasing hydration for the first time through the scripts. It is found that MLCs have smaller swellings than Na-MMT due to the asymmetric interlayer charges and mixed counterions in the I-M interlayer. However, in terms of the interaction energy for the in-depth reason of swelling, it is found that the clay-clay interaction energy and the clay-ion interaction energy drop, while the clay-water interaction energy increases with increasing hydration. In addition, the attractive interaction of clay-bound water seriously promotes swelling, and it is mainly composed of Coulomb interaction and Van der Waals interaction. The higher the K+ concentration, the more noticeable these phenomena are. Besides, it is also reported that the number and distribution mechanism of hydrogen bonds in MLCs are very different from that of pure clay. This work provides insight into the molecular mechanism for initial swelling and clay-bound water interaction in widespread MLCs. This will help to decipher its specific role in soils and minimize clay swelling.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3