Abstract
The quasi-one-dimensional antiferromagnetic insulator BaFe2S3 becomes superconducting under a hydrostatic pressure of ∼10 GPa. Single crystals of this compound are usually obtained by melting and further slow cooling of BaS or Ba, Fe, and S, and are small and needle-shaped (few mm long and 50–200 μm wide). A notable sample dependence on the antiferromagnetic transition temperature, transport behavior, and presence of superconductivity has been reported. In this work, we introduce a novel approach for the growth of high-quality single crystals of BaFe2S3 based on a laser-assisted floating zone method that yields large samples free of ferromagnetic impurities. We present the characterization of these crystals and the comparison with samples obtained using the procedure reported in the literature.
Funder
Alexander von Humboldt-Stiftung
European Research Council
Max-Planck-Gesellschaft
Deutsche Forschungsgemeinschaft
Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter – ct.qmat
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献