Bio-Surfactant Assisted Aqueous Exfoliation of High-Quality Few-Layered Graphene

Author:

Akter Nasima,Mawardi Ayob Muhammad Taqiyuddin,Radiman Shahidan,Khandaker Mayeen UddinORCID,Osman HamidORCID,Alamri SultanORCID

Abstract

Realizing the efficacy of the liquid-phase exfoliation technique to obtain a greater quantity of graphene, this study demonstrates a cost-effective technique of bio-surfactant-assisted liquid-phase exfoliation of few-layer graphene (FLG) with a low defect ratio. An ultrasonic bath without any toxic chemicals or chemical modification was employed to exfoliate the graphene at room temperature. Several state-of-the-art characterization techniques such as TEM, AFM, XRD UV-Vis, and Raman spectroscopy were used to confirm the presence of the graphene. The dispersion exhibits a typical Tyndall scattering to the red laser beam. After a 7-h sonication of the dispersion, followed by a centrifugation frequency of 500 rpm for half an hour, the graphene concentration was found to be 1.2 mg/mL. The concentration decreases monotonically with an increase in the frequency, as a higher frequency causes sedimentation of the larger flakes or removes the adsorbed surfactant molecules from the graphene structures that collapse the graphene sheets into the graphite. The presence of an amino acid head-group in the surfactant facilitated exfoliation in an aqueous solution at well below the critical micelle concentration (CMC) of the surfactant. The product demonstrates all characteristic features of an FLG system. The TEM and AFM image reveals large-area graphene with a wrinkle-free surface; these morphological properties are confirmed by XRD and Raman spectroscopy. This study suggests that a sonication-induced process with a biocompatible surfactant can produce a cheap, large-surface-area graphene system for a wide range of applications. Moreover, the use of a probe sonicator as an alternative to the bath-type sonicator, together with the demonstrated technique, may reduce the time needed, and leads to a manifold increase in the yield.

Funder

Taif University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3