Effect of Synthesis Method of Nickel–Samarium-Doped Ceria Anode on Distribution of Triple-Phase Boundary and Electrochemical Performance

Author:

Shaikh Abdul Muhammed Ali,Yahaya Ahmad Zubair,Anwar Mustafa,Soo Mun Teng,Muchtar AndanastutiORCID,Kovrugin Vadim M.

Abstract

Two-dimensional (2D) electron back scattered diffraction (EBSD) is a powerful tool for microstructural characterization of crystalline materials. EBSD enables visualization and quantification of the effect of synthesis methods on the microstructure of individual grains, thus correlating the microstructure to mechanical and electrical efficiency. Therefore, this work was designed to investigate the microstructural changes that take place in the Ni-SDC cermet anode under different synthesis methods, such as the glycine–nitrate process (GNP) and ball-milling. EBSD results revealed that different grain size and distribution of Ni and SDC phases considerably influenced the performance of the Ni–SDC cermet anodes. The performance of the Ni–SDC cermet anode from GNP was considerably higher than that of Ni-SDC from ball-milling, which is attributed to the triple-phase boundary (TPB) density and phase connectivity. Due to the poor connectivity between the Ni and SDC phases and the development of large Ni and SDC clusters, the Ni-SDC cermet anode formed by ball milling had a lower mechanical and electrical conductivity. Moreover, the Ni–SDC cermet anode sample obtained via GNP possessed sufficient porosity and did not require a pore former. The length and distribution of the active TPB associated with phase connectivity are crucial factors in optimizing the performance of Ni-SDC cermet anode materials. The single cell based on the Ni–SDC composite anode prepared through GNP exhibited a maximum power density of 227 mW/cm2 and 121 mW/cm2 at 800 °C in H2 and CH4, respectively.

Funder

Ministry of Higher Education, Malaysia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3