Study on Creep Damage in Sn60Pb40 and Sn3.8Ag0.7Cu (Lead-Free) Solders in c-Si Solar PV Cell Interconnections under In-Situ Thermal Cycling in Ghana

Author:

Afriyie Nyarko Frank Kwabena,Takyi Gabriel,Effah Francis Boafo

Abstract

A numerical study on the creep damage in soldered interconnects in c-Si solar photovoltaic cells has been conducted using equivalent creep strain, accumulated creep strain and accumulated creep energy density methods. The study used data from outdoor weathering of photovoltaic (PV) modules over a three-year period (2012–2014) to produce temperature cycle profiles that served as thermal loads and boundary conditions for the investigation of the soldered interconnects’ thermo-mechanical response when exposed to real-world conditions. A test region average (TRA) temperature cycle determined in a previous study for the 2012–2014 data was also used. The appropriate constitutive models of constituent materials forming a typical solar cell were utilized to generate accurate material responses to evaluate the damage from the thermal cycles. This study modeled two forms of soldered interconnections: Sn60Pb40 (SnPb) and Sn3.8Ag0.7Cu (Pb-free). The results of the damage analysis of the interconnections generated from the thermal cycle loads using accumulated creep strain method showed that the Pb-free solder interconnection recorded greater damage than that of the SnPb-solder interconnection for the TRA, 2012, 2013 and 2014 temperature cycles. The percentage changes from SnPb to Pb-free were 57.96%, 43.61%, 44.87% and 45.43%, respectively. This shows significant damage to the Pb-free solder under the TRA conditions. Results from the accumulated creep energy density (ACED) method showed a percentage change of 71.4% (from 1.3573 × 105 J/mm3 to 2.3275 × 105 J/mm3) in accumulated creep energy density by replacing SnPb-solder with Pb-free solder interconnection during the TRA thermal cycle. At the KNUST test site in Kumasi, Ghana, the findings show that Sn60Pb40 solder interconnections are likely to be more reliable than Pb-free solder interconnections. The systematic technique employed in this study would be useful to the thermo-mechanical reliability research community. The study also provides useful information to PV design and manufacturing engineers for the design of robust PV modules.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning assisted representative period selection as input to modelling of field degradation in photovoltaic modules;Solar Energy Materials and Solar Cells;2023-12

2. Strength Analysis and Modeling of Direct Extrusion Tooling for Fusible Solder;Proceedings of the 8th International Conference on Industrial Engineering;2022-08-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3