Abstract
The impact of different parameters on the compressive strength of geopolymer synthesized from clay and bagasse bottom ash is reported. Geopolymer was synthesized from thermally activated clay and bottom bagasse ash using sodium silicate and sodium hydroxide as activator. The maximum dissolution of alumina and silica from the bagasse ash and clay maintaining different alkali conditions is studied. The resulting geopolymer synthesized under different conditions is studied for compressive strength. Different characterizations of the resulting geopolymer were carried out using different analytical instruments. The results indicated that the dissolution and strength of geopolymer have close relationships with the alkali concentration, solution to solid ratio and curing period. The highest compressive strength of 25 MPa was observed for 8M NaOH, 24 MPa for 0.3 solution to solid ratio, 30 MPa for 60% clay and 30 MPa for 27 days of compressive strength.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献