Effect of Fe on the Microstructure and Mechanical Properties of Fe/FeAl2O4 Cermet Prepared by Hot Press Sintering

Author:

Zhang Kuai,Li Yungang,Wang Chuang,Yan Hongyan,Li Hui,Liang Jinglong,Dang JieORCID

Abstract

The Fe/FeAl2O4 cermet was prepared with Fe-Fe2O3-Al2O3 powder by a hot press sintering method at 1400 °C. The raw materials for the powder particles were respectively 2 µm (Fe), 0.5 µm (Fe2O3), and 0.5 µm (Al2O3) in diameter, the sintering pressure was 30 MPa, and the holding time was 120 min. The effects of different Fe mass ratios on the microstructure and mechanical properties of Fe/FeAl2O4 cermet were studied. The results showed that a new ceramic phase FeAl2O4 could be formed by an in situ reaction during the hot press sintering. When the Fe mass ratio was increased, the microstructure and mechanical properties of the Fe/FeAl2O4 cermet showed a change law that initially became better and then became worse. The best microstructure and mechanical properties were obtained in the S2 sample, where the mass ratio of Fe-Fe2O3-Al2O3 was 6:1:2. In this Fe mass ratio, the relative density was about 94%, and the Vickers hardness and bending strength were 1.21 GPa and 210.0 MPa, respectively. The reaction mechanism of Fe in the preparation process was the in situ synthesis reaction of FeAl2O4 and the diffusion reaction of Fe to FeAl2O4 grains. The increase of the Fe mass ratio improved the wettability of Fe and FeAl2O4, which increased the diffusion rate of Fe to FeAl2O4 grains, which increased the influence on the structure of FeAl2O4.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference25 articles.

1. Study on the iron base ceramic metal braking materials for high-speed train;Shi;J. China Railw. Soc.,2001

2. Iron-cermet friction materials for aircraft application;Wang;Mater. Eng.,1999

3. Ceramic and metal matrix composites: Routes and properties

4. Research development of ceramic/Fe-based alloy composites;Chen;Chin. J. Nonferrous Met.,2010

5. Coprecipitated iron-containing catalysts (Fe-Al2O3, Fe-Co-Al2O3, Fe-Ni-Al2O3) for methane decomposition at moderate temperaturesI. Genesis of calcined and reduced catalysts

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3