Abstract
Alzheimer’s disease (AD) causes dementia and continuous damage to brain cells. Cholinesterase inhibitors can alleviate the condition by increasing communication between the nerve cells and reducing the risk of dementia. In an effort to treat Alzheimer’s disease, we synthesized flurbiprofen-based diamines (1,2 diaminoethane and 1,3 diaminopropane) Zn(II), Cu(II) metal complexes and characterized them by single-crystal X-ray analysis, NMR, (FT)-IR, UV-Vis, magnetic susceptibility, elemental analysis and conductivities measurements. Synthesized diamine metal complexes appeared in ionic forms and have distorted octahedral geometry based on conductivity studies, magnetic susceptibility and electronic studies. Single crystal X-ray diffraction analysis confirmed (2b) Cu(H2O)2(L1)2(L2)2 complex formation. Moreover, we tested all synthesized metal complexes against the cholinesterase enzyme that showed higher inhibition potential. In general, copper metal complexes showed higher inhibitory activities than simple metal complexes with flurbiprofen. These synthesized metal complexes may derive more effective and safe inhibitors for cholinesterases.
Funder
Shanghai Science and Technology Committee
Fundamental Research Funds for the Central Universities
National College Student Innovation Experiment Program
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献