The Crystallization Behavior of TiO2-CaO-SiO2-Al2O3-MgO Pentabasic Slag with a Basicity of 1.1–1.4

Author:

Lei Huxu,Tan Chaowen,Fan Gangqiang,Huang Dejun,Ding Xiaoming,Dang JieORCID

Abstract

The utilization of titanium-containing blast furnace slag has been an unsolved problem for a long time. Failure to make effective use of the slag, which is caused by a high TiO2 content within it, not only results in a waste of resources, especially titanium, but also increases environmental risk. The key to address the problem is the enrichment and extraction of TiO2 from the slag first. Therefore, in order to study the enrichment of titanium, the crystallization behavior of TiO2-CaO-SiO2-Al2O3-MgO pentabasic slag, the main compositions of titanium-containing blast furnace slag, within the basicity range of 1.1–1.4 was investigated theoretically and experimentally. Thermodynamic calculation shows that perovskite is the main titanium-containing phase and titanium can be enriched in perovskite. By decreasing the temperature, perovskite precipitates at first. Additionally, with the increase of basicity, perovskite precipitation temperature increases continuously, and its amount of precipitation almost does not change, while the amounts of other phases change obviously. The experimental results demonstrate similar results except for the amount of perovskite (with the increase of basicity, perovskite precipitation amount increases slightly), caused by kinetic reason. In addition, the morphology of the slag at different scales was observed. The surface of the cooled slag is granular, vein-like, and irregular, multilaterally shaped from outside to inside. The crystal is dendritic with a spine-like trunk, and the edge is blade-like. In terms of the structure of the crystal, the inner part of it is perovskite, and the outer part is covered with a layer of other phases with spinel inlaying it. Finally, the precipitated mechanism is proposed as well.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Fok Ying Tung Education Foundation

Joint fund between Shenyang National Laboratory for Materials Science and State Key Labora-tory of Advanced Processing and Recycling of Nonferrous Metals

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metallurgical Slag;Crystals;2022-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3