Stabilization of Superionic-Conducting High-Temperature Phase of Li(CB9H10) via Solid Solution Formation with Li2(B12H12)

Author:

Kim Sangryun,Kisu Kazuaki,Orimo Shin-ichi

Abstract

We report the stabilization of the high-temperature (high-T) phase of lithium carba-closo-decaborate, Li(CB9H10), via the formation of solid solutions in a Li(CB9H10)-Li2(B12H12) quasi-binary system. Li(CB9H10)-based solid solutions in which [CB9H10]− is replaced by [B12H12]2− were obtained at compositions with low x values in the (1−x)Li(CB9H10)−xLi2(B12H12) system. An increase in the extent of [B12H12]2− substitution promoted stabilization of the high-T phase of Li(CB9H10), resulting in an increase in the lithium-ion conductivity. Superionic conductivities of over 10−3 S cm−1 were achieved for the compounds with 0.2 ≤ x ≤ 0.4. In addition, a comparison of the Li(CB9H10)−Li2(B12H12) system and the Li(CB9H10)−Li(CB11H12) system suggests that the valence of the complex anions plays an important role in the ionic conduction. In battery tests, an all-solid-state Li–TiS2 cell employing 0.6Li(CB9H10)−0.4Li2(B12H12) (x = 0.4) as a solid electrolyte presented reversible battery reactions during repeated discharge–charge cycles. The current study offers an insight into strategies to develop complex hydride solid electrolytes.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3