Abstract
In materials science, crystal structures are the cornerstone in the structure–property paradigm. The description of crystal compounds may be ascribed to the number of different atomic chemical environments, which are related to the Wyckoff sites. Hence, a set of features related to the different atomic environments in a crystal compound can be constructed as input data for artificial neural networks (ANNs). In this article, we show the performance of a series of ANNs developed using crystal-site-based features. These ANNs were developed to classify compounds into halite, garnet, fluorite, hexagonal perovskite, ilmenite, layered perovskite, -o-tp- perovskite, perovskite, and spinel structures. Using crystal-site-based features, the ANNs were able to classify the crystal compounds with a 93.72% average precision. Furthermore, the ANNs were able to retrieve missing compounds with one of these archetypical structure types from a database. Finally, we showed that the developed ANNs were also suitable for a multitask learning paradigm, since the extracted information in the hidden layers linearly correlated with lattice parameters of the crystal structures.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献