Effect of Unburned Pulverized Coal on the Melting Characteristics and Fluidity of Blast Furnace Slag

Author:

Xiang Dongwen,Shen Fengman,Jiang Xin,Gao Qiangjian,Zheng HaiyanORCID

Abstract

A substantial amount of attention has been paid to viscosity due to its substantial effect on the fluid dynamics of molten blast furnace slag and slag metal reaction kinetics during the pyrometallurgy process. To clarify the influence mechanism of unburned pulverized coal (UPC) on blast furnace (BF) slag viscosity, the effects of different contents of UPC on the BF slag viscosity, free-running temperature and viscous flow activation energy were investigated. The slag viscosity was measured by the rotating cylinder method, and the microstructure of the cooled slag was observed by SEM. As a result, the main reason for a change in the slag viscosity, free-running temperature and viscous flow activation energy was that the UPC entering the slag formed a large number of white particles that predominantly comprised deposited carbon and a high melting point solid solution. In addition, the disintegration or polymerization of the SixOyz- structure was also a contributing factor. When the content of the UPC was 0.6%, the free-running temperature and viscous flow activation energy of slag were 1623 K and 120.969 kJ/mol, respectively, which are lower than those of the slag without UPC. However, the free-running temperature and viscous flow activation energy increased to 1668 K and 286.625 kJ/mol, respectively, when the content of UPC increased to 4%, which are higher than those of slag without UPC.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3