Deformation and Damage Assessments of Two DP1000 Steels Using a Micromechanical Modelling Method

Author:

Habibi Niloufar,Vajragupta NapatORCID,Münstermann SebastianORCID

Abstract

Damage characterization and micromechanical modelling in dual-phase (DP) steels have recently drawn attention, since any changes in the alloying elements or process route strongly influence the microstructural features, deformation behavior of the phases, and damage to the micro-mechanisms, and subsequently the particular mechanical properties of the material. This approach can be used to stablish microstructure–properties relationships. For instance, the effects of local damage from shear cutting on edge crack sensitivity in the following deformation process can be studied. This work evaluated the deformation and damage behaviors of two DP1000 steels using a microstructure-based approach to estimate the edge cracking resistance. Phase fraction, grain size, phase distribution, and texture were analyzed using electron backscatter diffraction and secondary electron detectors of a scanning electron microscope and employed in 3D representative volume elements. The deformation behavior of the ferrite phase was defined using a crystal plasticity model, which was calibrated through nanoindentation tests. Various loading conditions, including uniaxial tension, equi-biaxial tension, plane strain tension, and shearing, along with the maximum shear stress criterion were applied to investigate the damage initiation and describe the edge cracking sensitivity of the studied steels. The results revealed that a homogenous microstructure leads to homogenous stress–strain partitioning, delayed damage initiation, and high edge cracking resistance.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3