Low-Carbon Sustainable Composites from Waste Phosphogypsum and Their Environmental Impacts

Author:

Ren Kai,Cui Na,Zhao Shuyuan,Zheng Kai,Ji Xia,Feng Lichao,Cheng Xin,Xie Ning

Abstract

Phosphogypsum (PG) is an industrial waste from the production of phosphoric acid and phosphate fertilizer. Disposal and landfill of PG pose significant environmental problems due to its hazardous components. Although many researchers have explored the possibility of PG recycling, challenges still exist before it can be high-effectively reused. In particular, a great deal of recent attention has been attracted to explore using PG as raw material to manufacture sustainable composites. The impurities movement, recycling efficiency, and environmental impacts have to be further investigated. This review article summarized the state of the art of the purification process, application areas, and the environmental impacts of PG waste. The main challenges and potential application approaches were discussed. This article is focused on reviewing the details of the PG reusing which benefits the readers on learning the knowledge from previous efforts. The main challenges of reusing PG were discussed from the chemical, physical, and materials perspectives.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3