Automatic Identification and Quantitative Characterization of Primary Dendrite Microstructure Based on Machine Learning

Author:

Wan Weihao,Li Dongling,Wang HaizhouORCID,Zhao Lei,Shen Xuejing,Sun Dandan,Chen JingyangORCID,Xiao Chengbo

Abstract

Dendrites are important microstructures in single-crystal superalloys. The distribution of dendrites is closely related to the heat treatment process and mechanical properties of single-crystal superalloys. The primary dendrite arm spacing (PDAS) is an important length scale to describe the distribution of dendrites. In this work, the second-generation single crystal superalloy HT901 with a diameter of 15 mm was imaged under a metallurgical microscope. An automatic dendrite core identification and full-field quantitative statistical analysis method is proposed to automatically detect the dendrite core and calculate the local PDAS. The Faster R-CNN algorithm combined with test time augmentation (TTA) technology is used to automatically identify the dendrite cores. The local multi-directional algorithm combined with Voronoi tessellation is used to determine the local nearest neighbor dendrite and calculate the local PDAS and coordination number. The accuracy of using Faster R-CNN combined with TTA to detect the dendrite core of HT901 reaches 98.4%, which is 15.9% higher than using Faster R-CNN alone. The algorithm calculates the local PDAS of all dendrites in H901 and captures the Gaussian distribution of the local PDAS. The average PDAS determined by the Gaussian distribution is 415 μm, which is only a small difference from the average spacing λ¯ (420 μm) calculated by the traditional method. The technology analyzes the relationship between the local PDAS and the distance from the center of the sample. The local PDAS near the center of HT901 are larger than those near the edge. The results suggests that the method enables the rapid, accurate and quantitative dendritic distribution characterization.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3