Prediction of Compressive Strength of Rice Husk Ash Concrete through Different Machine Learning Processes

Author:

Iqtidar AmmarORCID,Bahadur Khan Niaz,Kashif-ur-Rehman Sardar,Faisal Javed MuhmmadORCID,Aslam FahidORCID,Alyousef RayedORCID,Alabduljabbar Hisham,Mosavi AmirORCID

Abstract

Cement is among the major contributors to the global carbon dioxide emissions. Thus, sustainable alternatives to the conventional cement are essential for producing greener concrete structures. Rice husk ash has shown promising characteristics to be a sustainable option for further research and investigation. Since the experimental work required for assessing its properties is both time consuming and complex, machine learning can be used to successfully predict the properties of concrete containing rice husk ash. A total of 192 data points are used in this study to assess the compressive strength of rice husk ash blended concrete. Input parameters include age, amount of cement, rice husk ash, super plasticizer, water, and aggregates. Four soft computing and machine learning methods, i.e., artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), multiple nonlinear regression (NLR), and linear regression are employed in this research. Sensitivity analysis, parametric analysis, and correlation factor (R2) are used to evaluate the obtained results. The ANN and ANFIS outperformed other methods.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3