Crystal Structure Prediction of the Novel Cr2SiN4 Compound via Global Optimization, Data Mining, and the PCAE Method

Author:

Škundrić Tamara,Zagorac Dejan,Schön Johann Christian,Pejić Milan,Matović Branko

Abstract

A number of studies have indicated that the implementation of Si in CrN can significantly improve its performance as a protective coating. As has been shown, the Cr-Si-N coating is comprised of two phases, where nanocrystalline CrN is embedded in a Si3N4 amorphous matrix. However, these earlier experimental studies reported only Cr-Si-N in thin films. Here, we present the first investigation of possible bulk Cr-Si-N phases of composition Cr2SiN4. To identify the possible modifications, we performed global explorations of the energy landscape combined with data mining and the Primitive Cell approach for Atom Exchange (PCAE) method. After ab initio structural refinement, several promising low energy structure candidates were confirmed on both the GGA-PBE and the LDA-PZ levels of calculation. Global optimization yielded six energetically favorable structures and five modifications possible to be observed in extreme conditions. Data mining based searches produced nine candidates selected as the most relevant ones, with one of them representing the global minimum in the Cr2SiN4. Additionally, employing the Primitive Cell approach for Atom Exchange (PCAE) method, we found three more promising candidates in this system, two of which are monoclinic structures, which is in good agreement with results from the closely related Si3N4 system, where some novel monoclinic phases have been predicted in the past.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy landscapes—Past, present, and future: A perspective;The Journal of Chemical Physics;2024-08-05

2. Structural properties of full-scope AlN/BN compounds investigated using ab initio calculations;Procedia Structural Integrity;2024

3. Multicomponent solid solution with pyrochlore structure;Boletín de la Sociedad Española de Cerámica y Vidrio;2023-11

4. Exploring the energy landscape and crystal structures of CrSi2N4;Zeitschrift für anorganische und allgemeine Chemie;2023-10-06

5. Structure prediction in low dimensions: concepts, issues and examples;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-05-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3