Abstract
3D printing of novel and smart materials has received considerable attention due to its applications within biological and medical fields, mostly as they can be used to print complex architectures and particular designs. However, the internal structure during 3D printing can be problematic to resolve. We present here how time-resolved synchrotron microbeam Small-Angle X-ray Diffraction (μ-SAXD) allows us to elucidate the local orientational structure of a liquid crystal elastomer-based printed scaffold. Most reported 3D-printed liquid crystal elastomers are mainly nematic; here, we present a Smectic-A 3D-printed liquid crystal elastomer that has previously been reported to promote cell proliferation and alignment. The data obtained on the 3D-printed filaments will provide insights into the internal structure of the liquid crystal elastomer for the future fabrication of liquid crystal elastomers as responsive and anisotropic 3D cell scaffolds.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献