Abstract
The temperature effects on the microstructural evolution of a coarse-grained Al5083 alloy during equal channel angular pressing (ECAP), were studied at ambient and high temperatures. The microstructural evaluation was done using an EBSD (electron backscattering diffraction) process. The grain refinement occurred as the number of passes increased, which had a positive effect on its strength. Additionally, increasing the pressing temperature leads to a decrease in the new grain’s formation and an increase in the normal grain size in the third pass. This can be ascribed to the unwinding of strain similarity between the grains because of the continuous activity of dynamic recuperation and the grain limit sliding occurring at a higher temperature. The attainment of grain refinement is examined exhaustively in this study.
Funder
NSTIP Strategic Technologies Program
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献