‘Horror Vacui’ in the Oxygen Sublattice of Lithium Niobate Made Affordable by Cationic Flexibility

Author:

Corradi GáborORCID,Kovács LászlóORCID

Abstract

The present review is intended for a broader audience interested in the resolution of the several decades-long controversy on the possible role of oxygen-vacancy defects in LiNbO3. Confronting ideas of a selected series of papers from classical experiments to brand new large-scale calculations, a unified interpretation of the defect generation and annealing mechanisms governing processes during thermo- and mechanochemical treatments and irradiations of various types is presented. The dominant role of as-grown and freshly generated Nb antisite defects as traps for small polarons and bipolarons is demonstrated, while mobile lithium vacancies, also acting as hole traps, are shown to provide flexible charge compensation needed for stability. The close relationship between LiNbO3 and the Li battery materials LiNb3O8 and Li3NbO4 is pointed out. The oxygen sublattice of the bulk plays a much more passive role, whereas oxygen loss and Li2O segregation take place in external or internal surface layers of a few nanometers.

Funder

National Research, Development and Innovation Office

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3