Fracture Behavior of Single-Crystal Sapphire in Different Crystal Orientations

Author:

Huang Shizhan,Lin Jiaming,Wang Ningchang,Guo Bicheng,Jiang Feng,Wen Qiuling,Lu Xizhao

Abstract

In order to study the anisotropy of fracture toughness and fracture mechanism of single-crystal sapphire, the three-point bending tests and the single-edge V-notch beam (SEVNB) were used to test the fracture toughness of A-plane, C-plane, and M-plane sapphire, which are widely used in the semiconductor, aerospace, and other high-tech fields. Fracture morphology was investigated by a scanning electron microscope and three-dimensional video microscopy. The fracture toughness and fracture morphology of different crystal planes of sapphire showed obvious anisotropy and were related to the loading surfaces. C-plane sapphire showed the maximal fracture toughness of 4.24 MPa·m1/2, and fracture toughness decreases in the order of C-plane, M-plane, and A-plane. The surface roughness is related to the dissipation of fracture energy. The surface roughness of the fracture surface is in the same order as C-plane > M-plane > A-plane. The fracture behavior and morphology of experiments were consistent with the theoretical analysis. C-plane sapphire cleavages along the R-plane with an angle of 57.6 degrees and the rhombohedral twin were activated. M-plane and A-plane sapphire cleavages along their cross-section.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3