Epitaxy of LiNbO3: Historical Challenges and Recent Success

Author:

Zivasatienraj Bill,Tellekamp M. BrooksORCID,Doolittle W. Alan

Abstract

High-quality epitaxial growth of thin film lithium niobate (LiNbO3) is highly desirable for optical and acoustic device applications. Despite decades of research, current state-of-the-art epitaxial techniques are limited by either the material quality or growth rates needed for practical devices. In this paper, we provide a short summary of the primary challenges of lithium niobate epitaxy followed by a brief historical review of lithium niobate epitaxy for prevalent epitaxial techniques. Available figures of merit for crystalline quality and optical transmission losses are given for each growth method. The highest crystalline quality lithium niobate thin film was recently grown by halide-based molecular beam epitaxy and is comparable to bulk lithium niobate crystals. However, these high-quality crystals are grown at slow rates that limit many practical applications. Given the many challenges that lithium niobate epitaxy imposes and the wide variety of methods that have unsuccessfully attempted to surmount these barriers, new approaches to lithium niobate epitaxy are required to meet the need for simultaneously high crystalline quality and sufficient thickness for devices not currently practical by existing techniques.

Funder

Air Force Office of Scientific Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3