Abstract
Cubic KR3F10 (R = Y, Tb) single crystals have been successfully grown using the Bridgman technique. Growth of crystals of this type is complicated due to the hygroscopicity of potassium fluoride and melt overheating. The solution to the problem of oxygen-incorporated impurities has been demonstrated through the utilization of potassium hydrofluoride as a precursor. In this study, the crystal quality, structure features, and optical, thermal and electrophysical properties of KR3F10 were examined. Data on the temperature dependences of conductivity properties of KTb3F10 crystals were obtained for the first time. These crystals indicated thermal conductivity equal to 1.54 ± 0.05 Wm−1K−1 at room temperature caused by strong phonon scattering in the Tb-based crystal lattice. Ionic conductivities of KY3F10 and KTb3F10 single crystals were 4.9 × 10−8 and 1.2 × 10−10 S/cm at 500 K, respectively, and the observed difference was determined by the activation enthalpy of F− ion migration. Comparison of the physical properties of the grown KR3F10 crystals with the closest crystalline analog from the family of Na0.5−xR0.5+xF2+2x (R = Tb, Y) cubic solid solutions is reported.
Funder
Russian Foundation for Basic Research
Ministry of Higher Education and Science of the Russian Federation
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Reference75 articles.
1. Handbook of Solid-State Lasers: Materials, Systems and Applications;Denker,2013
2. Laser Crystals
3. 2 µm Laser Sources and Their Possible Applications
4. New Fluoride Laser Host;Abdulsabirov;Sov. Phys. Crystallogr.,1987
5. Effect of Ce co-doping on KY3F10:Pr crystals
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献