A Framework for the Magnetic Dipole Effect on the Thixotropic Nanofluid Flow Past a Continuous Curved Stretched Surface

Author:

Khan Noor SaeedORCID,Usman Auwalu HamisuORCID,Sohail Arif,Hussanan Abid,Shah Qayyum,Ullah Naeem,Kumam PoomORCID,Thounthong Phatiphat,Humphries Usa Wannasingha

Abstract

The magnetic dipole effect for thixotropic nanofluid with heat and mass transfer, as well as microorganism concentration past a curved stretching surface, is discussed. The flow is in a porous medium, which describes the Darcy–Forchheimer model. Through similarity transformations, the governing equations of the problem are transformed into non-linear ordinary differential equations, which are then processed using an efficient and powerful method known as the homotopy analysis method. All the embedded parameters are considered when analyzing the problem through solution. The dipole and porosity effects reduce the velocity, while the thixotropic nanofluid parameter increases the velocity. Through the dipole and radiation effects, the temperature is enhanced. The nanoparticles concentration increases as the Biot number and curvature, solutal, chemical reaction parameters increase, while it decreases with increasing Schmidt number. The microorganism motile density decreases as the Peclet and Lewis numbers increase. Streamlines demonstrate that the trapping on the curved stretched surface is uniform.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3