Determination of Al-2.18Mg-1.92Li Alloy’s Microstructure Degradation in Corrosive Environment

Author:

Kozina Franjo,Brodarac Zdenka ZovkoORCID,Brajčinović Sandra,Petrič Mitja

Abstract

The utilization of aluminum-lithium-magnesium (Al-Li-Mg) alloys in the transportation industry is enabled by excellent engineering properties. The mechanical properties and corrosion resistance are influenced by the microstructure development comprehending the solidification of coherent strengthening precipitates, precipitation of course and angular equilibrium phases as well as the formation and widening of the Precipitate-free zone. The research was performed to determine the microstructure degradation of Al-2.18Mg-1.92Li alloy in a corrosive environment using electrochemical measurements. The solidification sequence of the Al-2.18Mg-1.92Li alloy, obtained using Thermo–Calc software support, indicated the transformation of the αAl dendritic network and precipitation of AlLi (δ), Al2LiMg (T), and Al8Mg5 (β) phase. All of the phases are anodic with respect to the αAl enabling microstructure degradation. To achieve higher microstructure stability, the sample was solution hardened at 520 °C. However, the sample in as-cast condition showed a lower corrosion potential (−749.84 mV) and corrosion rate (17.01 mm/year) with respect to the solution-hardened sample (−752.52 mV, 51.24 mm/year). Higher microstructure degradation of the solution-hardened sample is a consequence of δ phase precipitation at the grain boundaries and inside the grain of αAl, leading to intergranular corrosion and cavity formation. The δ phase precipitates from the Li and Mg enriched the αAl solid solution at the solution-hardening temperature.

Funder

Ministry of Science and Education and Infrastructural scientific projects

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3