Author:
Chang Hong,Zhang Zhicheng,Ma Zhanguo,Ji Yongsheng,Huang Xinshuo
Abstract
The accumulation characteristics of surface chloride in concrete in different zones are different in the marine environment. A series of laboratory experiments were conducted to investigate the surface chloride and permeation characteristics of concrete in a simulated marine environment. The experimental results indicated that the surface chloride and chloride profiles of concrete in different zones of marine environment decreased in the following order: tidal zone > splash zone > submerged zone > atmospheric zone. The width of the ascent zone of Cl− concentration at tidal and splash zones was far less than that of the influential depth of moisture transport (IDMT), and the range of convection zone was dependent on the IDMT. Cl− at splash and tidal zones penetrated into concrete as a bulk liquid by non-saturated permeation driven by a humidity gradient. The change of chloride profiles in concrete along the altitudinal gradient was consistent with that of the cyclic water absorption amount (CWAA). The transport rate of chloride was the highest at the highest point of the tide.
Funder
State key R & D Program of China
National Natural Science Foundation of China
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献