Investigation of CoCr Dental Alloy: Example from a Casting Workflow Standpoint

Author:

Majerič Dragana,Lazić Vojkan,Majerič PeterORCID,Marković Aleksa,Rudolf RebekaORCID

Abstract

Cobalt-chromium (CoCr) alloys have been used in dentistry for dental bridges, crowns and implants for decades. When using CoCr alloys, a number of fractures have occurred in the Dental Laboratory, both when handling the castings and after they have been placed in the patient’s mouth. It is assumed that the key cause of the resulting fractures of CoCr dental bridges is the casting process, which includes the preparation and mixing of the basic components of the CoCr dental alloy, unstable solidification and the final treatment of the tooth casting surface. The aim of this study was, therefore, to examine three castings differently prepared from the CoCr alloy. For the initial CoCr alloy, we selected the one supplied directly from the manufacturer; three test samples were CoCr alloy remelted four times in the same crucible, while the fourth sample was the remaining solidified alloy from the crucible, taken at the last remelting. Characterisation of the microstructure of all four samples was performed by optical and scanning electron microscopy equipped with an energy dispersive X-ray spectroscope and X-ray diffractometry. Microhardness measurements were also performed. The investigation revealed that the microstructure of the castings is composed of a CoCr alloy matrix with a eutectic interdendritic composition and interdendritic precipitates, which were rich in W and Mo. The two oxides were identified as chromium oxide with silicon content and chromium oxide, which originated from the CoCr alloy as casting residue. The high content of silicon in the chromium oxide can be attributed to the silicon oxide from the ceramic melting crucible, mixed in with the remains from the CoCr alloy melting. The second oxide showed a more regular elemental content for chromium oxide, mixed with a small quantity of impurities and the casting CoCr alloy. Based on this research, some recommendations were made for working with CoCr alloys in the Dental Laboratory, with the aim of reducing the risk of dental bridge fractures in the future.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

EU

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3