La1–yBayF3–y Solid Solution Crystals as an Effective Solid Electrolyte: Growth and Properties

Author:

Buchinskaya Irina I.,Karimov Denis N.ORCID,Sorokin Nikolay I.

Abstract

A series of nonstoichiometric La1–yBayF3–y (0 ≤ y ≤ 0.12) single crystals with a tysonite-type structure (sp. gr. P-3c1) was grown from the melt by the directional crystallization method in a fluorinating atmosphere, and some physical properties were characterized. The concentration dependence of electrical conductivity σdc(y) La1–yBayF3–y crystals was studied. The composition of the ionic conductivity maximum for this solid electrolyte was refined. It was confirmed that the maximum conductivity σmax = 8.5 × 10–5 S/cm (295 K) was observed at the composition ymax = 0.05 ± 0.01. Analysis of the electrophysical data for the group of tysonite-type solid electrolytes R1–yMyF3–y (M = Ca, Sr, Ba, Eu2+ and R = La, Ce, Pr, Nd) showed that the compositions of the maxima of their conductivity were close and amount to y = 0.03−0.05. This fact indicates a weak influence of the size effect (ionic radii R3+ and M2+) on the value of ymax for R1–yMyF3–y solid electrolytes.

Funder

Russian Foundation for Basic Research

Ministry of Higher Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent progress, challenges and prospects of electrolytes for fluoride-ion batteries;Energy Reviews;2024-09

2. Hybrid cathodes of fluoride-ion batteries with carbon nanotubes;Ceramics International;2023-12

3. Synthesis and Ionic Conductivity of Fluoride–Oxide Composites in NdF3–Nd2O3 and NdF3–SrF2–Nd2O3 Systems;Crystallography Reports;2023-12

4. A New Way of Preparing Nanosized Tysonite Phases;Bulletin of the Russian Academy of Sciences: Physics;2023-10

5. A novel method for the preparation of nanosized tysonite phases;Известия Российской академии наук. Серия физическая;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3