Thermoelastic Properties and Elastocaloric Effect in Rapidly Quenched Ribbons of Ti2NiCu Alloy in the Amorphous and Crystalline State

Author:

Morozov Evgeny,Kuznetsov DmitryORCID,Kalashnikov Vladimir,Victor Koledov,Shavrov Vladimir

Abstract

The thermoelastic properties and the elastocaloric effect (ECE) were studied in rapidly quenched ribbons of the Ti2NiCu alloy samples in amorphous and crystalline states under periodic mechanical tension with a frequency of up to 50 Hz. In the amorphous samples, elastic behavior is observed, described by Hooke’s law, with a high coefficient of thermal expansion α = 1.7 × 10−4 K−1. Polycrystalline ribbons of the Ti2NiCu alloy have the classical shape memory effect (SME), the temperatures of the forward and reverse thermoelastic martensitic transitions being Ms = 345 K, Mf = 325 K, As = 332 K, and Af = 347 K and the coefficient of the dependence of the transition temperature on mechanical stress being β = 0.12 K/MPa. The experimentally measured value of the adiabatic temperature change under the action of mechanical stress (ECE) in the amorphous state of the alloy at room temperature (Tr = 300 K) was ΔT = −2 K, with a relative elongation of ε = 1.5% and a mechanical stress of σ = 243 MPa. For crystalline samples of Ti2NiCu alloy ribbons, the ECE is maximum near the completion temperature of the reverse thermoelastic martensitic transformation Af, and its value was 21 K and 7 K under cyclic mechanical loads of 300 and 100 MPa, respectively. It is shown that the ECE value does not depend on the frequency of external action in the range from 0 to 50 Hz. The specific power of the rapidly quenched ribbon was evaluated as a converter of thermal energy at an external mechanical stress of 100 MPa; its value was 175 W/g at a frequency of 50 Hz. The thermodynamic model based on the Landau theory of phase transitions well explains the properties of both amorphous ribbons (reverse ECE) and alloy ribbons with EPF (direct ECE).

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Non-Contact Optical Methods for Measuring the Magnetocaloric Effect;Physics of Metals and Metallography;2023-11

2. Advanced Non-Contact Optical Methods for Magnetocaloric Effect Measuring;Физика металлов и металловедение;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3