Abstract
We report the dielectric tensors on the cleavage plane of biaxial SnSxSe1-x alloys in the spectral energy region from 0.74 to 6.42 eV obtained by spectroscopic ellipsometry. Single-crystal SnSxSe1-x alloys were grown by the temperature-gradient method. Strongly anisotropic optical responses are observed along the different principal axes. An approximate solution yields the anisotropic dielectric functions along the zigzag (a-axis) and armchair (b-axis) directions. The critical point (CP) energies of SnSxSe1-x alloys are obtained by analyzing numerically calculated second derivatives, and their physical origins are identified by energy band structure. Blue shifts of the CPs are observed with increasing S composition. The fundamental bandgap for Se = 0.8 and 1 in the armchair axis arises from band-to-band transitions at the M0 minimum point instead of the M1 saddle point as in SnS. These optical data will be useful for designing optoelectronic devices based on SnSxSe1-x alloys.
Funder
National Research Foundation of Korea
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献