Author:
Matson Douglas M.,Liu Xuanjiang,Rodriguez Justin E.,Jeon Sangho,Shuleshova Olga
Abstract
Double recalescence in many ferrous alloy systems involves rapid solidification of metastable ferrite from the undercooled melt with subsequent transformation to stable austenite. Containerless processing is used to monitor the process using pyrometry and high-speed cinematography such that delay behavior can be predicted based on the application of the retained damage model (RDM). When comparing Fe-Cr-Ni alloys to Fe-Co alloys, the cluster attachment rate is enhanced while free energy retention is reduced. These trends are tied to specific alloy properties. A retained free energy criterion is proposed based on the ratio of thermophysical properties used to define the transformation driving force such that the thermodynamic limit for energy retention may be predicted. Surprisingly, at long delay times, healing occurs such that much of the retained free energy is not available to enhance the transition from metastable to stable phases. At delay times less than one second, no healing is observed and the RDM correctly predicts transformation delay behavior over a wide range of alloy compositions.
Funder
National Aeronautics and Space Administration
Deutsches Zentrum für Luft- und Raumfahrt
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献