Abstract
This communication introduces a fast material- and process-agnostic modeling approach, not reported in the open literature, that is calibrated for predicting the evolution of texture in metal additive manufacturing of stainless steel 304L as a function of a process parameter, namely the laser scanning speed. The outputs of the model are compared against independent validation experiments for the same material system and show excellent consistency. The model also predicts a trend in the change of texture intensity as a function of the process parameter. The major novelty and strength of this work is the model’s speed and extremely light computational load. The model’s calibrations and predictions were carried out in 9.2 s on a typical desktop computer.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献