Diamonds from the Mir Pipe (Yakutia): Spectroscopic Features and Annealing Studies

Author:

Rakhmanova Mariana I.,Komarovskikh Andrey Yu.ORCID,Palyanov Yuri N.,Kalinin Alexander A.,Yuryeva Olga P.,Nadolinny Vladimir A.

Abstract

For this study, 21 samples of colorless octahedral diamonds (weighing 5.4–55.0 mg) from the Mir pipe (Yakutia) were investigated with photoluminescence (PL), infrared (IR), and electron paramagnetic resonance (EPR) spectroscopies. Based on the IR data, three groups of diamonds belonging to types IIa, IaAB, and IaB were selected and their spectroscopic features were analyzed in detail. The three categories of stones exhibited different characteristic PL systems. The type IaB diamonds demonstrated dominating nitrogen–nickel complexes S2, S3, and 523 nm, while they were less intensive or even absent in the type IaAB crystals. The type IIa diamonds showed a double peak at 417.4 + 418.7 nm (the 418 center in this study), which is assumed to be a nickel–boron defect. In the crystals analyzed, no matter which type, 490.7, 563.5, 613, and 676.3 nm systems of various intensity could be detected; moreover, N3, H3, and H4 centers were very common. The step-by-step annealing experiments were performed in the temperature range of 600–1700 °C. The treatment at 600 °C resulted in the 563.5 nm system’s disappearance; the interstitial carbon vacancy annihilation could be considered as a reason. The 676.5 nm and 613 nm defects annealed out at 1500 °C and 1700 °C, respectively. Furthermore, as a result of annealing at 1500 °C, the 558.5 and 576 nm centers characteristic of superdeep diamonds from São Luis (Brazil) appeared. These transformations could be explained by nitrogen diffusion or interaction with the dislocations and/or vacancies produced.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3