Author:
Sun Maolin,Gong Zhen,Yin Hang,Zhang Zheng,Li Yutong,Dong Haonan,Jing Weijun,Xie Decong,Liang Hailong,Wu Fayu
Abstract
The interaction of oxygen and fluorine (F&O) in an F-doped SnO2 film, prepared by regulating oxygen partial pressure and the content of doped fluorine from 2.5 at% to 10 at%, was investigated in the large perspective through characterization methods including XRD, Raman spectroscopy, photoluminescence spectroscopy, wettability measurement and a Hall effect test system. The results show that F&O’s competitive and cooperative relationship would be reflected in the structure and electrical characteristics of SnO2 films. The oxygen action is overwhelming and restricts fluorine, so a growing number of F atoms occupy the position by the order of co-edge oxygen of tin–oxygen octahedron chains > oxygen vacancies > segregation, which leads to that carrier concentration modestly increasing from ~1015 to ~1017/cm−3. As oxygen action is inadequate to restrain fluorine, more F atoms are likely to enter the SnO2 lattice in a solid-solution way to replace the O atoms at the co-edge position of the octahedron chains, causing a dramatic increase in carrier concentration from ~1016 to ~1019/cm−3. Furthermore, by continuing to weaken oxygen action, only 2.5 at% of fluorine content could bring about a carrier concentration augment from ~1016/cm−3 to ~1018/cm−3, then going up to ~1021/cm−3 by post-annealing. However, the impairment of oxygen action contributes to a more effective doping of fluorine on SnO2 film. Such mutual action between fluorine and oxygen provides a direction for highly efficient production and tunable regulation of SnO2 film on demand.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Liaoning Province
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献