Computational Study of Structural, Molecular Orbitals, Optical and Thermodynamic Parameters of Thiophene Sulfonamide Derivatives

Author:

Mubarik Adeel,Rasool Nasir,Hashmi Muhammad AliORCID,Mansha AsimORCID,Zubair Muhammad,Shaik Mohammed RafiORCID,Sharaf Mohammed A.F.,Awwad Emad Mahrous,Abdelgawad AbdelattyORCID

Abstract

Thiophene and sulfonamide derivatives serve as biologically active compounds, used for the manufacture of large numbers of new drugs. In this study, 11 selected derivatives of thiophene sulfonamide were computed for their geometric parameters, such as hyperpolarizability, chemical hardness (ƞ), electronic chemical potential (μ), electrophilicity index (ω), ionization potential (I), and electron affinity (A). In addition, FT-IR and UV-Vis spectra were also simulated through theoretical calculations. The geometrical parameters and vibrational frequencies with assignments of the vibrational spectra strongly resemble the experimentally calculated values. Besides, the frontier molecular orbitals were also determined for various intramolecular interactions that are responsible for the stability of the compounds. The isodensity surfaces of the frontier molecular orbitals (FMOs) are the same pattern in most of the compounds, but in some compounds are disturbed due to the presence of highly electronegative hetero-atoms. In this series of compounds, 3 shows the highest HOMO–LUMO energy gap and lowest hyperpolarizability, which leads to the most stable compound and less response to nonlinear optical (NLO), while 7 shows the lowest HOMO–LUMO energy gap and highest hyperpolarizability, which leads to a less stable compound and a high NLO response. All compounds have their extended three-dimensional p-electronic delocalization which plays an important role in studying NLO responses.

Funder

Deanship of Scientific Research, King Saud University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3