Author:
Lei Qian,Wang Jian,Misra Amit
Abstract
In this study, laser rapid solidification technique was used to refine the microstructure of ternary Al–Cu–Si and binary Al–Cu eutectic alloys to nanoscales. Micropillar compression testing was performed to measure the stress–strain response of the samples with characteristic microstructure in the melt pool regions. The laser-remelted Al–Al2Cu–Si ternary alloy was observed to reach the compressive strength of 1.59 GPa before failure at a strain of 28.5%, which is significantly better than the as-cast alloy with a maximum strength of 0.48 GPa at a failure strain of 4.8%. The laser-remelted Al–Cu binary alloy was observed to reach the compressive strength of 2.07 GPa before failure at a strain of 26.5%, which is significantly better than the as-cast alloy with maximum strength of 0.74 GPa at a failure strain of 3.3%. The enhanced compressive strength and improved compressive plasticity were interpreted in terms of microstructural refinement and hierarchical eutectic morphology.
Funder
U.S. Department of Energy
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献