Mechanical Behavior of Al–Al2Cu–Si and Al–Al2Cu Eutectic Alloys

Author:

Lei Qian,Wang Jian,Misra Amit

Abstract

In this study, laser rapid solidification technique was used to refine the microstructure of ternary Al–Cu–Si and binary Al–Cu eutectic alloys to nanoscales. Micropillar compression testing was performed to measure the stress–strain response of the samples with characteristic microstructure in the melt pool regions. The laser-remelted Al–Al2Cu–Si ternary alloy was observed to reach the compressive strength of 1.59 GPa before failure at a strain of 28.5%, which is significantly better than the as-cast alloy with a maximum strength of 0.48 GPa at a failure strain of 4.8%. The laser-remelted Al–Cu binary alloy was observed to reach the compressive strength of 2.07 GPa before failure at a strain of 26.5%, which is significantly better than the as-cast alloy with maximum strength of 0.74 GPa at a failure strain of 3.3%. The enhanced compressive strength and improved compressive plasticity were interpreted in terms of microstructural refinement and hierarchical eutectic morphology.

Funder

U.S. Department of Energy

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3