Physical, Mechanical and Durability Properties of Ecofriendly Ternary Concrete Made with Sugar Cane Bagasse Ash and Silica Fume

Author:

Landa-Ruiz Laura,Landa-Gómez Aldo,Mendoza-Rangel José M.ORCID,Landa-Sánchez Abigail,Ariza-Figueroa Hilda,Méndez-Ramírez Ce Tochtli,Santiago-Hurtado GriseldaORCID,Moreno-Landeros Victor M.ORCID,Croche René,Baltazar-Zamora Miguel AngelORCID

Abstract

In the present investigation, the physical, mechanical and durability properties of six concrete mixtures were evaluated, one of conventional concrete (CC) with 100% Portland cement (PC) and five mixtures of Ecofriendly Ternary Concrete (ETC) made with partial replacement of Portland Cement by combinations of sugar cane bagasse ash (SCBA) and silica fume (SF) at percentages of 10, 20, 30, 40 and 50%. The physical properties of slump, temperature, and unit weight were determined, as well as compressive strength, rebound number, and electrical resistivity as a durability parameter. All tests were carried out according to the ASTM and ONNCCE standards. The obtained results show that the physical properties of ETC concretes are very similar to those of conventional concrete, complying with the corresponding regulations. Compressive strength results of all ETC mixtures showed favorable performances, increasing with aging, presenting values similar to CC at 90 days and greater values at 180 days in the ETC-20 and ETC-30 mixtures. Electrical resistivity results indicated that the five ETC mixtures performed better than conventional concrete throughout the entire monitoring period, increasing in durability almost proportionally to the percentage of substitution of Portland cement by the SCBA–SF combination; the ETC mixture made with 40% replacement had the highest resistivity value, which represents the longest durability. The present electrical resistivity indicates that the durability of the five ETC concretes was greater than conventional concrete. The results show that it is feasible to use ETC, because it meets the standards of quality, mechanical resistance and durability, and offers a very significant and beneficial contribution to the environment due to the use of agro-industrial and industrial waste as partial substitutes up to 50% of CPC, which contributes to reduction in CO2 emissions due to the production of Portland cement, responsible for 8% of total emissions worldwide.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3