Heterogeneous Crystal Nucleation from the Melt in Polyethylene Oxide Droplets on Graphite: Kinetics and Microscopic Structure

Author:

Tariq MuhammadORCID,Thurn-Albrecht ThomasORCID,Dolynchuk OleksandrORCID

Abstract

It is well known that the crystallization of liquids often initiates at interfaces to foreign solid surfaces. In this study, using polarized light optical microscopy, atomic force microscopy (AFM), and wide-angle X-ray scattering (WAXS), we investigate the effect of substrate–material interactions on nucleation in an ensemble of polyethylene oxide (PEO) droplets on graphite and on amorphous polystyrene (PS). The optical microscopy measurements during cooling with a constant rate explicitly evidenced that the graphite substrate enhances the nucleation kinetics, as crystallization occurred at approximately an 11 °C higher temperature than on PS due to changes in the interactions at the solid interface. This observation allowed us to conclude that graphite induces heterogeneous nucleation in PEO. By employing the classical nucleation theory for analysis of the data with reference to the amorphous PS substrate, the obtained results indicated that the crystal nuclei with contact angles in the range of 100–117° were formed at the graphite interface. Furthermore, we show that heterogeneous nucleation led to a preferred orientation of PEO crystals on graphite, whereas PEO crystals on PS had isotropic orientation. The difference in crystal orientations on the two substrates was also confirmed with AFM, which showed only edge-on lamellae in PEO droplets on graphite compared to unoriented lamellae on PS.

Funder

Deutsche Forschungsgemeinschaft

European Regional Development Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3